Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 14.430
Filtrar
1.
BMC Biotechnol ; 24(1): 18, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600497

RESUMO

BACKGROUND: Nanotechnology-based drug delivery systems have received much attention over the past decade. In the present study, we synthesized Methyl Urolithin A-loaded solid lipid nanoparticles decorated with the folic acid-linked chitosan layer called MuSCF-NPs and investigated their effects on cancer cells. METHODS: MuSCF-NPs were prepared using a high-pressure homogenization method and characterized using FTIR, FESEM, DLS, and zeta potential methods. Drug encapsulation was assessed by spectrophotometry and its cytotoxic effect on various cancer cells (MDA-MB231, MCF-7, PANC, AGS, and HepG2) by the MTT method. Antioxidant activity was assessed by the ABTS and DPPH methods, followed by expression of genes involved in oxidative stress and apoptosis by qPCR and flow cytometry. RESULTS: The results showed the formation of monodisperse and stable round nanoparticles with a size of 84.8 nm. The drug loading efficiency in MuSCF-NPs was reported to be 88.6%. MuSCF-NPs exhibited selective cytotoxicity against MDA-MB231 cells (IC50 = 40 µg/mL). Molecular analysis showed a significant increase in the expression of Caspases 3, 8, and 9, indicating that apoptosis was occurring in the treated cells. Moreover, flow cytometry results showed that the treated cells were arrested in his SubG1 phase, confirming the pro-apoptotic effect of the nanoparticles. The results indicate a high antioxidant effect of the nanoparticles with IC50 values ​​of 45 µg/mL and 1500 µg/mL against ABTS and DPPH, respectively. The reduction of catalase gene expression confirmed the pro-oxidant effect of nanoparticles in cancer cells treated at concentrations of 20 and 40 µg/mL. CONCLUSIONS: Therefore, our findings suggest that the MuSCF-NPs are suitable candidates, especially for breast cancer preclinical studies.


Assuntos
Benzotiazóis , Quitosana , Cumarínicos , Nanopartículas , Ácidos Sulfônicos , Ácido Fólico/química , Nanopartículas/química , Antioxidantes/farmacologia , Lipídeos , Portadores de Fármacos/química
2.
Zhongguo Zhong Yao Za Zhi ; 49(5): 1369-1377, 2024 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-38621985

RESUMO

A total of 11 active ingredients including psoralen, isopsoralen, bakuchiol, bavachalcone, bavachinin, corylin, coryfolin, isobavachalcone, neobavaisoflavone, bakuchalcone, and corylifol A from Psoraleae Fructus in the plasma samples of diabetic and normal rats were simultaneously determined by UHPLC-MS/MS. The pharmacokinetic parameters were calculated to elucidate the pharmacokinetic profiles of coumarins, flavonoids, and monoterpene phenols in normal and diabetic rats. The rat model of type 2 diabetes mellitus(T2DM) was induced by a high-sugar and high-fat diet combined with injection of 1% streptozotocin every two days. The plasma samples were collected at different time points after the rats were administrated with Psoraleae Fructus. The proteins in the plasma samples were precipitated by ethyl acetate, and the plasma concentrations of the 11 components of Psoraleae Fructus were determined by UHPLC-MS/MS. The pharmacokinetic parameters were calculated by DAS 3.0. The results showed that the pharmacokinetic beha-viors of 8 components including psoralen, isopsoralen, bakuchiol, and bavachinin from Psoraleae Fructus in both female and male mo-del rats were significantly different from those in normal rats. Among them, the coumarins including psoralen, isopsoralen, and corylin showed lowered levels in the blood of both female and male model rats. The flavonoids(bavachinin, corylifol A, and bakuchalcone) and the monoterpene phenol bakuchiol showed decreased levels in the female model rats but elevated levels in the male model rats. It is suggested that the dosage of Psoraleae Fructus should be reasonably adjusted for the patients of different genders at the time of clinical administration.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Medicamentos de Ervas Chinesas , Furocumarinas , Fenóis , Psoralea , Humanos , Ratos , Feminino , Masculino , Animais , Medicamentos de Ervas Chinesas/farmacocinética , Espectrometria de Massas em Tandem/métodos , Diabetes Mellitus Experimental/tratamento farmacológico , Flavonoides/farmacologia , Ficusina , Cumarínicos , Monoterpenos
3.
Cell Biochem Funct ; 42(3): e4019, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38622949

RESUMO

Colorectal cancer (CRC) is the world's second most common gastrointestinal malignancy. Preventing tumor cell proliferation and dissemination is critical for patient survival. Polyphenols have a variety of health advantages and can help prevent cancer. The current study examined different cellular activities of the gut-microbiota metabolite urolithin A (UA) on several colon cancer cell lines. The results revealed that UA suppressed cell growth in a dose- and time-dependent manner. In the current investigation, UA substantially affected cell migration in the wound-healing experiment and greatly decreased the number of colonies generated in each CRC cell culture. UA decreased cellular migration in CRC cells 48 h after treatment, which was significant (p < .001) compared to the migration rate in untreated cells. When compared to untreated cells, UA slowed the process of colony formation by reducing the number of colonies or altering their morphological shape. The western blot analysis investigation revealed that UA inhibits cellular metastasis by lowering the expression levels of matrix metalloproteinases 1 and 2 (MMP1 and MMP2) by more than 43% and 41% (p < .001) in HT29, 28% and 149% (p < .001) in SW480, and 90% and 74% (p < .001) in SW620, respectively, at a 100 µM dosage of UA compared to the control. Surprisingly, at a 100 µM dosage of UA, the expression levels of the tissue inhibitor of metalloproteinases 1 (TIMP1) were elevated in HT29, SW480, and SW620 cells treated with 100 µM of UA by more than 89%, 57%, and 29%, respectively. Our findings imply that UA has anticancer properties and might be used therapeutically to treat CRC. The findings provided the first indication of the influence of UA on cellular migration and metastasis in colon cancer cells. All of these data showed that UA might be used as an adjuvant therapy in the treatment of various forms of CRC.


Assuntos
Neoplasias do Colo , Neoplasias Colorretais , Cumarínicos , Humanos , Neoplasias Colorretais/metabolismo , Movimento Celular , Proliferação de Células , Linhagem Celular Tumoral , Metaloproteinase 2 da Matriz
4.
Anal Methods ; 16(15): 2400-2411, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38572632

RESUMO

This study presents a novel approach for the detection of carbofuran (CBF) insecticide by systematically exploring a calix[4]arene-derived fluorescence probe, CouC4S, functionalized with two coumarin-labelled cystamine linkages at the narrow edge of the calix[4]arene platform. The proposed method showed a fluorescence "signal - off" effect when CBF binds with CouC4S by quenching the fluorescence intensity of CouC4S. Its limit of detection was as low as 5.55 µM according to the emission study. The working concentration range for this ligand was observed to be up to 5-65 µM. This method could be applied for the on-spot detection of CBF in real samples such as cabbage by spiking CBFvia in situ experiments, which exhibited a limit of detection of 8.823 ppm. For the further confirmation of CouC4S:CBF binding, cyclic voltammetry, differential pulse voltammetry, powder X-ray diffraction, FT-IR spectroscopy, 1H NMR titration, MALDI-TOF and computational investigations were carried out.


Assuntos
Brassica , Carbofurano , Inseticidas , Espectroscopia de Infravermelho com Transformada de Fourier , Cumarínicos
5.
Bioorg Med Chem Lett ; 104: 129740, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38599294

RESUMO

Leukocyte antigen-related (LAR) phosphatase is a receptor-type protein tyrosine phosphatase involved in cellular signaling and associated with human disease including cancer and metabolic disorders. Selective inhibition of LAR phosphatase activity by well characterized and well validated small molecules would provide key insights into the roles of LAR phosphatase in health and disease, but identifying selective inhibitors of LAR phosphatase activity has been challenging. Recently, we described potent and selective inhibition of LAR phosphatase activity by the fungal natural product illudalic acid. Here we provide a detailed biochemical characterization of the adduct formed between LAR phosphatase and illudalic acid. A mass spectrometric analysis indicates that two cysteine residues are covalently labeled by illudalic acid and a related analog. Mutational analysis supports the hypothesis that inhibition of LAR phosphatase activity is due primarily to the adduct with the catalytic cysteine residue. A computational study suggests potential interactions between the illudalic acid moiety and the enzyme active site. Taken together, these data offer novel insights into the mechanism of inhibition of LAR phosphatase activity by illudalic acid.


Assuntos
Cisteína , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores , Humanos , Proteínas Tirosina Fosfatases , Cumarínicos/química , Fosfatase Alcalina
6.
Sci Rep ; 14(1): 8709, 2024 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622262

RESUMO

Sect. tuberculata plant belongs to the Camellia genus and is named for the "tuberculiform protuberance on the surface of the ovary and fruit". It is a species of great ornamental value and potential medicinal value. However, little has been reported on the metabolites of C. tuberculata seeds. Therefore, this study was conducted to investigate the metabolites of C. tuberculata seeds based on UPLC/ESI-Q TRAP-MS/MS with extensively targeted metabolomics. A total of 1611 metabolites were identified, including 107 alkaloids, 276 amino acids and derivatives, 283 flavonoids, 86 lignans and coumarins, 181 lipids, 68 nucleotides and derivatives, 101 organic acids, 190 phenolic acids, 10 quinones, 4 steroids, 17 tannins, 111 terpenoids, and 177 other metabolites. We compared the different metabolites in seeds between HKH, ZM, ZY, and LY. The 1311 identified different metabolites were classified into three categories. Sixty-three overlapping significant different metabolites were found, of which lignans and coumarins accounted for the largest proportion. The differentially accumulated metabolites were enriched in different metabolic pathways between HKH vs. LY, HKH vs. ZM, HKH vs. ZY, LY vs. ZY, ZM vs. LY and ZM vs. ZY, with the most abundant metabolic pathways being 4, 2, 4, 7, 7 and 5, respectively (p < 0.05). Moreover, among the top 20 metabolites in each subgroup comparison in terms of difference multiplicity 7, 8 and 13. ZM and ZY had the highest phenolic acid content. Ninety-six disease-resistant metabolites and 48 major traditional Chinese medicine agents were identified based on seven diseases. The results of this study will not only lead to a more comprehensive and in-depth understanding of the metabolic properties of C. tuberculata seeds, but also provide a scientific basis for the excavation and further development of its medicinal value.


Assuntos
Camellia , Hidroxibenzoatos , Lignanas , Camellia/química , Antioxidantes/química , Espectrometria de Massas em Tandem , Flavonoides/análise , Sementes/química , Metabolômica/métodos , Extratos Vegetais/química , Lignanas/análise , Cumarínicos/análise
7.
Sci Rep ; 14(1): 9106, 2024 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643226

RESUMO

Coumarins are heterocycles of great interest in the development of valuable active structures in chemistry and biological domains. The ability of coumarins to inhibit biofilm formation of Gram positive bacterium (Staphylococcus aureus), Gram negative bacterium (Escherichia coli) as well as the methicillin-resistant S. aureus (MRSA) has been previously described. In the present work, new hybrid coumarin-heterocycles have been synthesized via the reaction of coumarin-6-sulfonyl chloride and 6-aminocoumarin with different small heterocycle moieties. The biological efficacy of the new compounds was evaluated towards their ability to inhibit biofilm formation and their anti-inflammatory properties. The antimicrobial activities of the newly synthesized compounds were tested against Gram positive bacterium (S. aureus ATCC 6538), Gram negative bacterium (E. coli ATCC 25922), yeast (Candida albicans ATCC 10231) and the fungus (Aspergillus niger NRRL-A326). Compounds 4d, 4e, 4f, 6a and 9 showed significant MIC and MBC values against S. aureus, E. coli, C. albicans, and methicillin-resistant S. aureus (MRSA) with especial incidence on compound 9 which surpasses all the other compounds giving MIC and MBC values of (4.88 and 9.76 µg/mL for S. aureus), (78.13 and 312.5 µg/mL for E. coli), (9.77 and 78.13 µg/mL for C. albicans), and (39.06 and 76.7 µg/mL for MRSA), respectively. With reference to the antibiofilm activity, compound 9 exhibited potent antibiofilm activity with IC50 of 60, 133.32, and 19.67 µg/mL against S. aureus, E. coli, and MRSA, (respectively) considering the reference drug (neomycin). Out of all studied compounds, the anti-inflammatory results indicated that compound 4d effectively inhibited nitric oxide production in lipopolysaccharide-(LPS-) stimulated RAW264.7 macrophage cells, giving NO% inhibition of 70% compared to Sulindac (55.2%).


Assuntos
Antibacterianos , Staphylococcus aureus Resistente à Meticilina , Humanos , Antibacterianos/farmacologia , Antibacterianos/química , Staphylococcus aureus , Escherichia coli , Bactérias Gram-Positivas , Bactérias Gram-Negativas , Cumarínicos/farmacologia , Inflamação/tratamento farmacológico , Biofilmes , Anti-Inflamatórios/farmacologia , Testes de Sensibilidade Microbiana
8.
Phytother Res ; 38(4): 2077-2093, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38558449

RESUMO

Cisplatin-induced kidney injury (CKI) is a common complication of chemotherapy. Fraxetin, derived from Fraxinus bungeana A. DC. bark, has antioxidant, anti-inflammatory, and anti-fibrotic effects. This study aims to investigate fraxetin's effects on CKI and its underlying mechanism in vivo and in vitro. Tubular epithelial cells (TECs) and mice were exposed to cisplatin with and without fraxetin preconditioning assess fraxetin's role in CKI. TECs autophagy was observed using transmission electron microscopy. Apoptosis levels in animal tissues were measured using TUNEL staining. The protective mechanism of fraxetin was explored through pharmacological and genetic regulation of mTORC1. Molecular docking was used to identify potential binding sites between fraxetin and mTORC1. The results indicated that fraxetin pretreatment reduced cisplatin-induced kidney injury in a time- and concentration-dependent way. Fraxetin also decreased autophagy in TECs, as observed through electron microscopy. Tissue staining confirmed that fraxetin pretreatment significantly reduced cisplatin-induced apoptosis. Inhibition of mTORC1 using rapamycin or siRNA reversed the protective effects of fraxetin on apoptosis and autophagy in cisplatin-treated TECs, while activation of mTORC1 enhanced fraxetin's protective effect. Molecular docking analysis revealed that fraxetin can bind to HEAT-repeats binding site on mTORC1 protein. In  summary, fraxetin pretreatment alleviates CKI by antagonizing autophagy and apoptosis via mTORC1 activation. This provides evidence for the potential therapeutic application of fraxetin in CKI.


Assuntos
Injúria Renal Aguda , Cisplatino , Cumarínicos , Camundongos , Animais , Cisplatino/efeitos adversos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/farmacologia , Simulação de Acoplamento Molecular , Rim , Autofagia , Apoptose , Injúria Renal Aguda/induzido quimicamente
9.
IUCrJ ; 11(Pt 2): 224-236, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38427455

RESUMO

Leishmaniasis is a neglected parasitic tropical disease with numerous clinical manifestations. One of the causative agents of cutaneous leishmaniasis (CL) is Leishmania tropica (L. tropica) known for causing ulcerative lesions on the skin. The adverse effects of the recommended available drugs, such as amphotericin B and pentavalent antimonial, and the emergence of drug resistance in parasites, mean the search for new safe and effective anti-leishmanial agents is crucial. Miltefosine (MIL) was the first recommended oral medication, but its use is now limited because of the rapid emergence of resistance. Pharmaceutical cocrystallization is an effective method to improve the physicochemical and biological properties of active pharmaceutical ingredients (APIs). Herein, we describe the cocrystallization of coumarin-3-carboxylic acid (CU, 1a; 2-oxobenzopyrane-3-carboxylic acid, C10H6O4) with five coformers [2-amino-3-bromopyridine (1b), 2-amino-5-(trifluoromethyl)-pyridine (1c), 2-amino-6-methylpyridine (1d), p-aminobenzoic acid (1e) and amitrole (1f)] in a 1:1 stoichiometric ratio via the neat grinding method. The cocrystals 2-6 obtained were characterized via single-crystal X-ray diffraction, powder X-ray diffraction, differential scanning calorimetry and thermogravimetric analysis, as well as Fourier transform infrared spectroscopy. Non-covalent interactions, such as van der Waals, hydrogen bonding, C-H...π and π...π interactions contribute significantly towards the packing of a crystal structure and alter the physicochemical and biological activity of CU. In this research, newly synthesized cocrystals were evaluated for their anti-leishmanial activity against the MIL-resistant L. tropica and cytotoxicity against the 3T3 (normal fibroblast) cell line. Among the non-cytotoxic cocrystals synthesized (2-6), CU:1b (2, IC50 = 61.83 ± 0.59 µM), CU:1c (3, 125.7 ± 1.15 µM) and CU:1d (4, 48.71 ± 0.75 µM) appeared to be potent anti-leishmanial agents and showed several-fold more anti-leishmanial potential than the tested standard drug (MIL, IC50 = 169.55 ± 0.078 µM). The results indicate that cocrystals 2-4 are promising anti-leishmanial agents which require further exploration.


Assuntos
Antiprotozoários , Leishmania tropica , Leishmaniose Cutânea , Humanos , Antiprotozoários/farmacologia , Leishmaniose Cutânea/tratamento farmacológico , Cristalografia por Raios X , Cumarínicos/farmacologia
10.
Anal Chem ; 96(10): 4129-4137, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38469639

RESUMO

Long-term continuous imaging of endogenous HClO burst is of great importance for the elucidation of various physiological or pathological processes. However, most of the currently reported HClO probes have failed to achieve this goal due to their insufficient photobleaching resistance under a laser source. Herein, a highly stable ratiometric probe, HFTC-HClO 1, which is capable of continuously monitoring endogenous HClO burst over a long period of time, has been judiciously developed. Briefly, the de novo development of HFTC-HClO 1 mainly involved three main steps: (1) novel coumarins (HFTC 1-5) were designed and synthesized; (2) the most stable scaffold, HFTC 3, was selected through dye screening and cell imaging validation; and (3) based on HFTC 3, three candidate HClO probes were constructed, and HFTC-HClO 1 was finally selected due to its superior sensing properties toward HClO. Furthermore, HFTC-HClO 1 can quantitatively measure HClO levels in various real samples with excellent recovery (>90.4%), and the use of HFTC-HClO 1-coated test strips for qualitative analysis of HClO in real samples was also achieved. In addition, the application of HFTC-HClO 1 for long-term continuous monitoring of intracellular HClO burst was successfully demonstrated. Significantly, HFTC-HClO 1 was able to visualize HClO generated in the rheumatoid arthritis mouse model.


Assuntos
Corantes Fluorescentes , Ácido Hipocloroso , Camundongos , Animais , Ácido Hipocloroso/análise , Microscopia de Fluorescência/métodos , Imagem Óptica/métodos , Cumarínicos
11.
Molecules ; 29(5)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38474540

RESUMO

Molecular hybridization represents a new approach in drug discovery in which specific chromophores are strategically combined to create novel drugs with enhanced therapeutic effects. This innovative strategy leverages the strengths of individual chromophores to address complex biological challenges, synergize beneficial properties, optimize pharmacokinetics, and overcome limitations associated with single-agent therapies. Coumarins are documented to possess several bioactivities and have therefore been targeted for combination with other active moieties to create molecular hybrids. This review summarizes recent (2013-2023) trends in the synthesis of coumarins, as well as coumarin-chalcone and coumarin-triazole molecular hybrids. To cover the wide aspects of this area, we have included differently substituted coumarins, chalcones, 1,2,3- and 1,2,4-triazoles in this review and considered the point of fusion/attachment with coumarin to show the diversity of these hybrids. The reported syntheses mainly relied on well-established chemistry without the need for strict reaction conditions and usually produced high yields. Additionally, we discussed the bioactivities of the reported compounds, including antioxidative, antimicrobial, anticancer, antidiabetic, and anti-cholinesterase activities and commented on their IC50 where possible. Promising bioactivity results have been obtained so far. It is noted that mechanistic studies are infrequently found in the published work, which was also mentioned in this review to give the reader a better understanding. This review aims to provide valuable information to enable further developments in this field.


Assuntos
Antineoplásicos , Chalcona , Chalconas , Relação Estrutura-Atividade , Triazóis/química , Cumarínicos/química , Estrutura Molecular , Antineoplásicos/farmacologia
12.
Molecules ; 29(5)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38474588

RESUMO

Alcoholic liver disease (ALD) is the main factor that induces liver-related death worldwide and represents a common chronic hepatopathy resulting from binge or chronic alcohol consumption. This work focused on revealing the role and molecular mechanism of nodakenin (NK) in ALD associated with hepatic inflammation and lipid metabolism through the regulation of Nur77-P2X7r signaling. In this study, an ALD model was constructed through chronic feeding of Lieber-DeCarli control solution with or without NK treatment. Ethanol (EtOH) or NK was administered to AML-12 cells, after which Nur77 was silenced. HepG2 cells were exposed to ethanol (EtOH) and subsequently treated with recombinant Nur77 (rNur77). Mouse peritoneal macrophages (MPMs) were treated with lipopolysaccharide/adenosine triphosphate (LPS/ATP) and NK, resulting in the generation of conditioned media. In vivo, histopathological alterations were markedly alleviated by NK, accompanied by reductions in serum triglyceride (TG), aspartate aminotransferase (AST), and alanine aminotransferase (ALT) levels and the modulation of Lipin-1, SREBP1, and Nur77 levels in comparison to the EtOH-exposed group (p < 0.001). Additionally, NK reduced the production of P2X7r and NLRP3. NK markedly upregulated Nur77, inhibited P2X7r and Lipin-1, and promoted the function of Cytosporone B, a Nur77 agonist (p < 0.001). Moreover, Nur77 deficiency weakened the regulatory effect of NK on P2X7r and Lipin-1 inhibition (p < 0.001). In NK-exposed MPMs, cleaved caspase-1 and mature IL-1ß expression decreased following LPS/ATP treatment (p < 0.001). NK also decreased inflammatory-factor production in primary hepatocytes stimulated with MPM supernatant. NK ameliorated ETOH-induced ALD through a reduction in inflammation and lipogenesis factors, which was likely related to Nur77 activation. Hence, NK is a potential therapeutic approach to ALD.


Assuntos
Cumarínicos , Glucosídeos , Lipopolissacarídeos , Hepatopatias Alcoólicas , Animais , Camundongos , Lipopolissacarídeos/farmacologia , Hepatopatias Alcoólicas/metabolismo , Fígado , Etanol/metabolismo , Inflamação/metabolismo , Transdução de Sinais/fisiologia , Trifosfato de Adenosina/metabolismo , Camundongos Endogâmicos C57BL , Compostos Orgânicos
13.
Int Immunopharmacol ; 131: 111814, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38479159

RESUMO

OBJECTIVE: The increasing global prevalence of ulcerative colitis (UC) underscores the imperative to explore novel therapeutic approaches. Traditional Chinese medicine has historically shown potential in addressing this ailment. The current study aimed to elucidate the functional attributes and underlying mechanisms of isofraxidin, a coumarin derivative from Acanthopanax, in the context of UC. METHODS: A murine model of dextran sodium sulfate (DSS)-induced UC was established, and we conducted a comprehensive assessment of the influence of isofraxidin on UC symptomatology, colonic histopathological manifestations, the inflammatory response, and apoptosis. The potential receptor of isofraxidin was initially identified through the Target database and molecular docking analysis. Subsequent in vivo and in vitro experiments were conducted to determine the effects of isofraxidin on the identified receptor and associated signaling pathways. Transfection was used to examine the receptor's role in the regulatory mechanism of isofraxidin. RESULTS: Isofraxidin reduced UC symptoms and colonic histopathological impairments. Furthermore, isofraxidin ameliorated the DSS-induced inflammatory response and apoptosis in tissues. S1PR1 was identified as a target of isofraxidin and effectively suppressed activation of the IL-17 signaling pathway. Intriguingly, cellular experiments indicated that overexpression of S1PR1 counteracted the protective effect of isofraxidin. DISCUSSION: In summary, our investigation revealed that isofraxidin could modulate S1PR1 and regulate the IL-17 signaling pathway, thus ameliorating DSS-induced UC. These findings establish a robust foundation for considering isofraxidin as a prospective therapeutic intervention to treat UC.


Assuntos
Colite Ulcerativa , Colite , Humanos , Animais , Camundongos , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/patologia , Interleucina-17/metabolismo , Simulação de Acoplamento Molecular , Modelos Animais de Doenças , Transdução de Sinais , Colo/patologia , Cumarínicos/farmacologia , Cumarínicos/uso terapêutico , Receptores Acoplados a Proteínas G/metabolismo , Sulfato de Dextrana/farmacologia , Colite/induzido quimicamente , Camundongos Endogâmicos C57BL , Receptores de Esfingosina-1-Fosfato/metabolismo , Receptores de Esfingosina-1-Fosfato/uso terapêutico
14.
Ned Tijdschr Geneeskd ; 1682024 01 29.
Artigo em Holandês | MEDLINE | ID: mdl-38525862

RESUMO

OBJECTIVE: To investigate whether frail elderly people with atrial fibrillation (AF) who are currently using a vitamin K antagonist (VKA) should be switched to a direct-acting oral anticoagulant (DOAC). DESIGN: Randomized clinical trial. METHODS: 662 frail elderly AF patients were switched to a DOAC, and 661 patients continued their VKA. The primary endpoint was a major or clinically relevant non-major bleeding during 1 year of follow-up. Secondary endpoints included thrombo-embolic events. RESULTS: The mean age of the included patients was 83 years. In the 'switch to DOAC arm', 101 bleeding events (15.3%) occurred and in the 'continue with VKA arm', 62 bleeding events (9.4%); an increase of 69% more bleeding events (P-value 0.001). The number of thrombo-embolic events was not significantly different between both groups. CONCLUSION: Switching from a VKA to a DOAC in frail elderly people with AF leads to 69% more bleeding, without a difference in thrombo-embolic events.


Assuntos
Anticoagulantes , Fibrilação Atrial , Cumarínicos , Idoso , Idoso de 80 Anos ou mais , Humanos , Administração Oral , Anticoagulantes/efeitos adversos , Fibrilação Atrial/complicações , Fibrilação Atrial/tratamento farmacológico , Cumarínicos/efeitos adversos , Idoso Fragilizado , Hemorragia/induzido quimicamente , Hemorragia/epidemiologia , Vitamina K
15.
Biochem Pharmacol ; 223: 116112, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38458331

RESUMO

Glioblastoma (GBM) is the most common malignant glioma among brain tumors with low survival rate and high recurrence rate. Columbianadin (CBN) has pharmacological properties such as anti-inflammatory, analgesic, thrombogenesis-inhibiting and anti-tumor effects. However, it remains unknown that the effect of CBN on GBM cells and its underlying molecular mechanisms. In the present study, we found that CBN inhibited the growth and proliferation of GBM cells in a dose-dependent manner. Subsequently, we found that CBN arrested the cell cycle in G0/G1 phase and induced the apoptosis of GBM cells. In addition, CBN also inhibited the migration and invasion of GBM cells. Mechanistically, we chose network pharmacology approach by screening intersecting genes through targets of CBN in anti-GBM, performing PPI network construction followed by GO analysis and KEGG analysis to screen potential candidate signaling pathway, and found that phosphatidylinositol 3-kinase/Protein Kinase-B (PI3K/Akt) signaling pathway was a potential target signaling pathway of CBN in anti-GBM. As expected, CBN treatment indeed inhibited the PI3K/Akt signaling pathway in GBM cells. Furthermore, YS-49, an agonist of PI3K/Akt signaling, partially restored the anti-GBM effect of CBN. Finally, we found that CBN inhibited GBM growth in an orthotopic mouse model of GBM through inhibiting PI3K/Akt signaling pathway. Together, these results suggest that CBN has an anti-GBM effect by suppressing PI3K/Akt signaling pathway, and is a promising drug for treating GBM effectively.


Assuntos
Cumarínicos , Glioblastoma , Proteínas Proto-Oncogênicas c-akt , Animais , Camundongos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Glioblastoma/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Linhagem Celular Tumoral , Transdução de Sinais , Proliferação de Células
16.
J Ethnopharmacol ; 328: 118003, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38484957

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Pfaffia glomerata (Spreng.) Pedersen, Amaranthaceae, is found in South America, mainly in Brazil, where it is considered a species of great medicinal interest owing to its popular use as a tonic, aphrodisiac, anti-inflammatory, and analgesic. These properties can be attributed to the presence of the phytosteroid, 20-Hydroxyecdysone (ß-ecdysone), the main compound found in its roots. AIM OF THE REVIEW: This review aims to provide information about the botanical characteristics, ethnomedicinal uses, the phytochemistry, the biological activities, and the biotechnology of P. glomerata, an important species to local communities and groups researching medicinal plants of South America. MATERIALS AND METHODS: The information available on P. glomerata was collected from scientific databases (ScienceDirect, PubMed/MEDLINE, SciELO, and Scopus) until June 7, 2023, using the search terms "Pfaffia glomerata", "Pfaffia glomerata (Spreng.) Pedersen", and "Brazilian ginseng". The review includes studies that evaluated the botanical, ethnopharmacological, and phytochemical aspects, biological properties, nutraceutical uses, and the application of biotechnology for improving the biosynthesis of metabolites of interest. RESULTS: A total of 207 studies were identified, with 81 articles read in full. Seventy-six studies were included for qualitative synthesis. Overall, 40 compounds belonging to different classes are presented in this review, including ecdysteroids, triterpenes, saponins, flavonoids, anthraquinones, tannins, coumarins, alkaloids, and polysaccharides. Among them, flavonoids, anthraquinones, tannins, coumarins, and alkaloids were only putatively identified. ß-Ecdysone, triterpenes, saponins, and polysaccharides are the chemical components most frequently identified and isolated from P. glomerata and possibly responsible for ethnopharmacological use and the biological activities of this species, with important in vitro and in vivo activities, such as anti-inflammatory, antidepressant, aphrodisiac, analgesic, gastroprotective, antioxidant, and prebiotic. CONCLUSIONS: This review summarizes discussions about the P. glomerata species, highlighting its ethnopharmacological, chemical, biotechnological, and nutraceutical importance. New scientific studies on this species are encouraged in the search for new therapeutic molecules with pharmaceutical potential and nutraceutical applications.


Assuntos
Alcaloides , Amaranthaceae , Afrodisíacos , Botânica , Saponinas , Triterpenos , Etnofarmacologia , Ecdisterona , Taninos , Amaranthaceae/química , Brasil , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/uso terapêutico , Prebióticos , Analgésicos , Antraquinonas , Anti-Inflamatórios , Cumarínicos , Flavonoides , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Fitoterapia
17.
Chem Biol Interact ; 393: 110947, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38479716

RESUMO

In this study, twenty-nine coumarin-3-sulfonamide derivatives, twenty-seven of which are original were designed and synthesized. Cytotoxicity assay indicated that most of these derivatives exhibited moderated to good potency against A549 cells. Among them, compound 8q showed potent inhibition against the four tested cancer cell lines, especially A549 cells with IC50 value of 6.01 ± 0.81 µM, and much lower cytotoxicity on the normal cells was observed compared to the reference compounds. Bioinformatics analysis revealed human carbonic anhydrase IX (CAIX) was highly expressed in lung adenocarcinoma (LUAD) and associated with poor prognosis. The inhibitory activity of compound 8q against CAIX was assessed by using molecular docking and molecular dynamics simulations, which revealed prominent interactions of both compound 8q and CAIX at the active site and their high affinity. The results of ELISA assays verified that compound 8q possessed strong inhibitory activity against CAIX and high subtype selectivity, and could also down-regulate the expression of CAIX in A549 cells. Furthermore, the significant inhibitory effects of compound 8q on the migration and invasion of A549 cells were also found. After treatment with compound 8q, intracellular reactive oxygen species (ROS) levels increased and mitochondrial membrane potential (MMP) decreased. Mechanistic investigation using western blotting revealed compound 8q exerted the anti-migrative and anti-invasive effects probably through mitochondria-mediated PI3K/AKT pathway by targeting CAIX. In summary, coumarin-3-sulfonamide derivatives were developed as potential and effective CAIX inhibitors, which were worthy of further investigation.


Assuntos
Inibidores da Anidrase Carbônica , Cumarínicos , Humanos , Anidrase Carbônica IX , Simulação de Acoplamento Molecular , Cumarínicos/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Antígenos de Neoplasias/metabolismo , Sulfonamidas/farmacologia , Relação Estrutura-Atividade , Estrutura Molecular
18.
Molecules ; 29(6)2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38542877

RESUMO

Disordered gut microbiota (GM) structure and function may contribute to osteoporosis (OP). Nodakenin has been shown to ameliorate osteoporosis; however, its anti-osteoporotic mechanism is unknown. This study aimed to further reveal the mechanism of the anti-osteoporotic action of nodakenin from the perspective of the microbiome and metabolome. An osteoporosis model was induced in mice through ovariectomy (OVX), with bone mass and microstructure assessed using µCT. Subsequently, ELISA and histologic examination were used to detect biochemical indicators of bone conversion and intestinal morphology. Using metabolomics and 16S rRNA sequencing, it was possible to determine the composition and abundance of the gut microbiota in feces. The results revealed that nodakenin treatment improved the bone microstructure and serum levels of bone turnover markers, and increased the intestinal mucosal integrity. 16S rRNA sequencing analysis revealed that nodakenin treatment decreased the relative abundance of Firmicutes and Patescibacteria, as well as the F/B ratio, and elevated the relative abundance of Bacteroidetes in OVX mice. In addition, nodakenin enhanced the relative abundance of Muribaculaceae and Allobaculum, among others, at the genus level. Moreover, metabolomics analysis revealed that nodakenin treatment significantly altered the changes in 113 metabolites, including calcitriol. A correlation analysis revealed substantial associations between various gut microbiota taxa and both the osteoporosis phenotype and metabolites. In summary, nodakenin treatment alleviated OVX-induced osteoporosis by modulating the gut microbiota and intestinal barrier.


Assuntos
Cumarínicos , Microbioma Gastrointestinal , Glucosídeos , Osteoporose , Feminino , Camundongos , Animais , Humanos , RNA Ribossômico 16S/genética , Microbioma Gastrointestinal/genética , Osteoporose/tratamento farmacológico , Osteoporose/etiologia , Ovariectomia/efeitos adversos
19.
Molecules ; 29(6)2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38542958

RESUMO

This study unveils an innovative method for synthesizing coumarin S-glycosides, employing original biocatalysts able to graft diverse carbohydrate structures onto 7-mercapto-4-methyl-coumarin in one-pot reactions. The fluorescence properties of the generated thio-derivatives were assessed, providing valuable insights into their potential applications in biological imaging or sensing. In addition, the synthesized compounds exhibited no cytotoxicity across various human cell lines. This research presents a promising avenue for the development of coumarin S-glycosides, paving the way for their application in diverse biomedical research areas.


Assuntos
Cumarínicos , Glicosídeos , Humanos , Glicosídeos/química , Cumarínicos/química
20.
Molecules ; 29(6)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38543042

RESUMO

SARS-CoV, an RNA virus, is contagious and displays a remarkable degree of adaptability, resulting in intricate disease presentations marked by frequent genetic mutations that can ultimately give rise to drug resistance. Targeting its viral replication cycle could be a potential therapeutic option to counter its viral growth in the human body leading to the severe infectious stage. The Mpro of SARS-CoV-2 is a promising target for therapeutic development as it is crucial for viral transcription and replication. The derivatives of ß-diketone and coumarin have already been reported for their antiviral potential and, thus, are considered as a potential scaffold in the current study for the computational design of potential analogs for targeting the viral replication of SARS-CoV-2. In our study, we used novel diketone-hinged coumarin derivatives against the SARS-CoV-2 MPro to develop a broad-spectrum antiviral agent targeting SARS-CoV-2. Through an analysis of pharmacokinetics and docking studies, we identified a list of the top 10 compounds that demonstrated effectiveness in inhibiting the SARS-CoV-2 MPro virus. On the basis of the pharmacokinetics and docking analyses, the top 5 novel coumarin analogs were synthesized and characterized. The thermodynamic stability of compounds KS82 and KS94 was confirmed by their molecular dynamics, and the stability of the simulated system indicated their inhibitory nature. Molecules KS82 and KS94 were further evaluated for their anti-viral potential using Vero E6 cells followed by RT-PCR assay against SARS-CoV-2. The test compound KS82 was the most active with the potential to inhibit SARS-CoV-2 replication in Vero E6 cells. These data indicate that KS82 prevents the attack of the virus and emerges as the primary candidate with promising antiviral properties.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Cumarínicos/farmacologia , Bioensaio , Cetonas , Antivirais/farmacologia , Simulação de Acoplamento Molecular , Inibidores de Proteases , Simulação de Dinâmica Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...